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Effect of incorporation of alkyl linkers into siRNAs on RNA interference
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Unintended (off-target) transcript silencing is a critical problem associated with RNA interference (RNAi)-
based therapeutic applications. This paper shows that the incorporation of appropriate alkyl linkers at the
center of the sense strands can suppress the off-target effects induced by the sense strands without
reducing the RNAi-inducing activity of the antisense strands.

© 2008 Elsevier Ltd. All rights reserved.

RNA interference (RNAi) is a homology-dependent gene-silenc-
ing process that is triggered by exogenous or endogenous, long
double-stranded RNA molecules (dsRNA). The process is initiated
by a processive cleavage of dsRNA into 21- to 23-nucleotide (nt)
duplexes containing a 2-nt overhang at the 3’-end of each strand
termed short interfering RNAs (siRNAs) by the RNase IlI-like en-
zyme Dicer. The siRNAs are incorporated into a protein complex
designated as the RNA-induced silencing complex (RISC). Directed
by the antisense strand of the siRNA, the RISC recognizes and
cleaves the target mRNA.!3 siRNAs have considerable potential
as new therapeutic drugs for intractable diseases because they
can be rationally designed and synthesized if the sequences of
disease-causing genes are known.?>

Microarray profiling studies have demonstrated that siRNAs can
potentially silence multiple genes in addition to the intended
target.*"'° This unintended (off-target) transcript silencing is a crit-
ical problem associated with RNAi-based therapeutic applications.
Both the sense and the antisense strands of an siRNA can contrib-
ute to the off-target effects. Thus, minimizing the extent of sense-
strand incorporation into an activated RISC increases the targeting
specificity. Recently, it has been reported that 2’-O-methyl'" and
5'-0-methyl'?> modifications of siRNAs can effectively reduce the
siRNA off-target effects. Bramsen et al. showed that the segmenta-
tion of siRNA with locked nucleic acids (LNAs) at the center of the
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sense strand can suppress the off-target effects induced by the
sense strand.!> Here, we show that the incorporation of appropri-
ate alkyl linkers at the center of the sense strand (Fig. 1) can reduce
the off-target effects caused by the sense strand without reducing
the RNAi-inducing activity of the antisense strand.

First, we assessed the silencing activity of the segmented siR-
NAs by performing a dual-luciferase assay using the psiCHECK-2
vector. The sequences of the siRNAs used are shown in Figure
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Figure 1. Structures of the siRNAs containing alkyl linkers.
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Figure 2. Dual-luciferase assay (1). Final concentration of siRNAs: 10 nM.

2.1 siRNA 2 comprised 9- and 12-nt sense strands, while siRNA 3
comprised 10- and 11-nt sense strands. HeLa cells were co-trans-
fected with the vector and the siRNAs. The signals of Renilla lucif-
erase were normalized to those of the firefly luciferase.'® As shown
in Figure 2, it was found that the segmentation of siRNAs consider-
ably reduced their silencing activity. The RNAi-inducing ability of
siRNA 2 was weaker than that of siRNA 3. Table 2 shows the melt-
ing temperatures (T,,s) of the siRNAs. The T, value of the unseg-
mented siRNA 1 was 76.1 °C, whereas the T,,s of siRNAs 2 and 3
were 49.5 and 61.5°C (2 transitions) and 55.1 °C, respectively.
Therefore, we considered that the reduced silencing activity of
the segmented siRNAs was attributable to the low thermal stability
of the complexes.

In order to overcome this problem, we then designed and syn-
thesized siRNAs containing alkyl linkers. The segmented sense
strands of siRNA 3 were linked with alkyl linkers of various lengths

Table 1
Sequences of the oligonucleotides (ONs) and siRNAs used in this study
No. of siRNA No. of ON Sequence
siRNA1 ON12 5'-CUUCUUCGUCGAGACCAUGtt-3’
ON13 3'-ttGAAGAAGCAGCUCUGGUAC-5'
siRNA2 ON14 5'-CUUCUUCGU-3'
ON15 5'-CGAGACCAUGtt-3'
ON16 3'-ttGAAGAAGCAGCUCUGGUAC-5'
siRNA3 ON17 5'-CUUCUUCGUC-3’
ON18 5'-GAGACCAUGtt-3’
ON19 3'-ttGAAGAAGCAGCUCUGGUAC-5'
siRNA4 ON20 5'-CUUCUUCGUCPO(CH_),OpGAGACCAUGtt-3'
ON21 3'-ttGAAGAAGCAG—CUCUGGUAC-5
siRNA5 ON22 5'-CUUCUUCGUCPO(CH_)40pGAGACCAUGtt-3'
ON23 3'-ttGAAGAAGCAG—CUCUGGUAC-5’
siRNA6 ON24 5'-CUUCUUCGUCPO(CH_)sOpGAGACCAUGtt-3'
ON25 3'-ttGAAGAAGCAG—CUCUGGUAC-5
siRNA7 ON26 5'-CUUCUUCGU-pO(CH>)40pGAGACCAUGtt-3’
ON27 3'-ttGAAGAAGCAG—CUCUGGUAC-5
siRNA8 ON28 5'-CUUCUUCGU—CGAGACCAUGtt-3'
ON29 3'-ttGAAGAAGCApPO(CH,),0pGCUCUGGUAC-5
siRNA9 ON30 5'-CUUCUUCGU—CGAGACCAUGtt-3'
ON31 3'-ttGAAGAAGCApPO(CH,)40pGCUCUGGUAC-5
siRNA10 ON32 5'-CUUCUUCGU—CGAGACCAUGtt-3'
ON33 3'-ttGAAGAAGCApPO(CH,)sOpGCUCUGGUAC-5
siRNA11 ON34 5'-CUUCUUCGU—CGAGACCAUGtt-3'
ON35 3'-ttGAAGAAGCApPO(CH,)40p-CUCUGGUAC-5

The capital letters indicate ribonucleosides, while the small italicized letters rep-
resent 2’-deoxyribonucleosides.

Table 2

Hybridization data

No. of siRNA Tm (°C)
siRNA1 76.1

siRNA2 49.5 and 61.5
siRNA3 55.1

siRNA4 69.6

siRNA5 68.3

siRNA6 66.5

siRNA7 64.8

The T,,s were measured in a 0.01-M sodium phosphate buffer (pH 7.0) containing
0.1 M NacCl.

(Table 1). The sense strands of siRNAs 4, 5, and 6 contained ethyl-
ene (C,), tetramethylene (C4), and hexamethylene (Cg) linkers,
respectively. The antisense strands of siRNAs 8, 9, and 10 contained
the C,, C4, and Cg linkers, respectively. siRNAs 7 and 11 lacked the
complementary bases, C and G, opposite sites of G and C, respec-
tively. The Tys of the siRNAs 4, 5, and 6 were 69.6, 68.3, and
66.5 °C, respectively (Table 2). Thus, the thermal stability of the
complexes was found to improve with the attachment of alkyl link-
ers to the segmented strands.

In order to study the global conformation of the siRNAs contain-
ing alkyl linkers, we examined the circular dichroism (CD) spectra
of the siRNAs. As shown in Figure 3, negative and positive CD bands
were observed at ~209 nm and ~263 nm, respectively; the bands
were attributable to A-type duplexes. Although the intensity of
the positive bands obtained for siRNAs 4, 5, and 6 was slightly low-
er than that of siRNA 1, the shapes of their spectra were similar.
These results imply that the global conformations of siRNAs con-
taining alkyl linkers do not significantly differ from those of siRNAs
lacking linkers.

The RNAi-inducing ability of the siRNAs containing alkyl linkers
was assessed by performing a dual-luciferase assay, the results of
which are shown in Figure 4. The silencing activity of siRNAs 4,
5, and 6 was found to be comparable to that of siRNA 1 at each con-
centration of the siRNA. siRNA 6, which contained the C6 linker,
seemed to be most effective relative to others. Intriguingly, the
silencing activity of siRNA 7, which lacked the complementary
base opposite site of G, was equivalent to that of siRNA 5, which
contained the complementary base. On the other hand, the intro-
duction of the alkyl linkers into the antisense strands was found
to significantly reduce the silencing activity of the siRNAs. Among
these siRNAs, siRNA 10, which contained the C6 linker, showed the
lowest silencing activity.
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Figure 3. Circular dichroism (CD) spectra. CD spectra were measured at 20 °C in a
0.01-M sodium phosphate buffer (pH 7.0) containing 0.1 M NaCl.
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Figure 4. Dual-luciferase assay (2).

In conclusion, we synthesized siRNAs containing simple alkyl
linkers at the center of the sense and antisense strands. We found
that the incorporation of alkyl linkers at the center of the sense
strands could reduce the off-target effects caused by these strands
without reducing the RNAi-inducing activity of the antisense
strands. Thus, the siRNAs containing the alkyl linkers, especially
those containing the C6 linker, are novel siRNAs that can reduce
the off-target effect induced by the sense strand.
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